R/CATE.R
CATE.Rd
Computes the bias-corrected estimator of the difference of linear combinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.
CATE(
X1,
y1,
X2,
y2,
loading.mat,
model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE,
intercept.loading = FALSE,
beta.init1 = NULL,
beta.init2 = NULL,
lambda = NULL,
mu = NULL,
prob.filter = 0.05,
rescale = 1.1,
verbose = FALSE
)
Design matrix for the first sample, of dimension \(n_1\) x \(p\)
Outcome vector for the first sample, of length \(n_1\)
Design matrix for the second sample, of dimension \(n_2\) x \(p\)
Outcome vector for the second sample, of length \(n_1\)
Loading matrix, nrow=\(p\), each column corresponds to a loading of interest
The high dimensional regression model, either "linear"
or
"logistic"
or "logistic_alter"
Should intercept(s) be fitted for the initial estimators
(default = TRUE
)
Should intercept term be included for the
loading
(default = FALSE
)
The initial estimator of the regression vector for the 1st
data (default = NULL
)
The initial estimator of the regression vector for the 2nd
data (default = NULL
)
The tuning parameter in fitting initial model. If NULL
,
it will be picked by cross-validation. (default = NULL
)
The dual tuning parameter used in the construction of the
projection direction. If NULL
it will be searched automatically.
(default = NULL
)
The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
The factor to enlarge the standard error to account for the finite sample bias. (default = 1.1)
Should intermediate message(s) be printed (default =
FALSE
)
A list consists of plugin estimators, debiased estimators, and confidence intervals. For logistic regression, it also returns those items after probability transformation.
The vector of plugin(biased) estimators for the
linear combination of regression coefficients, length of ncol(loading.mat)
;
corresponding to different column in loading.mat
The vector of bias-corrected estimators for the linear
combination of regression coefficients, length of ncol(loading.mat)
;
corresponding to different column in loading.mat
The vector of standard errors of the bias-corrected estimators,
length of ncol(loading.mat)
; corresponding to different column in
loading.mat
The vector of bias-corrected estimators after probability
transformation, length of ncol(loading.mat)
; corresponding to different
column in loading.mat
.
The vector of standard errors of the bias-corrected
estimators after probability transformation, length of ncol(loading.mat)
;
corresponding to different column in loading.mat
.
X1 <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y1 <- -0.5 + X1[, 1] * 0.5 + X1[, 2] * 1 + rnorm(100)
X2 <- matrix(rnorm(90 * 5), nrow = 90, ncol = 5)
y2 <- -0.4 + X2[, 1] * 0.48 + X2[, 2] * 1.1 + rnorm(90)
loading1 <- c(1, 1, rep(0, 3))
loading2 <- c(-0.5, -1, rep(0, 3))
loading.mat <- cbind(loading1, loading2)
Est <- CATE(X1, y1, X2, y2, loading.mat, model = "linear")
## compute confidence intervals
ci(Est, alpha = 0.05, alternative = "two.sided")
#> loading lower upper
#> 1 1 -0.3232279 0.5234117
#> 2 2 -0.4701284 0.2116750
## summary statistics
summary(Est)
#> Call:
#> Inference for Treatment Effect
#>
#> Estimators:
#> loading est.plugin est.debias Std. Error z value Pr(>|z|)
#> 1 0.2042 0.1001 0.2160 0.4634 0.6431
#> 2 -0.2104 -0.1292 0.1739 -0.7430 0.4575