R/Dist.R
Dist.Rd
Inference for weighted quadratic functional of difference of the regression vectors (excluding the intercept term) in high dimensional generalized linear regressions.
Design matrix for the first sample, of dimension \(n_1\) x \(p\)
Outcome vector for the first sample, of length \(n_1\)
Design matrix for the second sample, of dimension \(n_2\) x \(p\)
Outcome vector for the second sample, of length \(n_1\)
The set of indices, G
in the quadratic form
The matrix A in the quadratic form, of dimension
\(|G|\times\)\(|G|\). If NULL
A would be set as the
\(|G|\times\)\(|G|\) submatrix of the population covariance matrix
corresponding to the index set G
(default = NULL
)
The high dimensional regression model, either "linear"
or
"logistic"
or "logistic_alter"
Should intercept(s) be fitted for the initial estimators
(default = TRUE
)
The initial estimator of the regression vector for the 1st
data (default = NULL
)
The initial estimator of the regression vector for the 2nd
data (default = NULL
)
Sampling splitting or not for computing the initial estimators.
It take effects only when beta.init1 = NULL
or beta.init2 =
NULL
. (default = TRUE
)
The tuning parameter in fitting initial model. If NULL
,
it will be picked by cross-validation. (default = NULL
)
The dual tuning parameter used in the construction of the
projection direction. If NULL
it will be searched automatically.
(default = NULL
)
The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
The factor to enlarge the standard error to account for the finite sample bias. (default = 1.1)
The enlargement factor for asymptotic variance of the
bias-corrected estimator to handle super-efficiency. It allows for a scalar
or vector. (default = c(0.25,0.5, 1)
)
Should intermediate message(s) be printed. (default =
FALSE
)
The plugin(biased) estimator for the quadratic form
of the regression vectors restricted to G
The bias-corrected estimator of the quadratic form of the regression vectors
Standard errors of the bias-corrected estimator,
length of tau
; corrsponding to different values of tau
X1 <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y1 <- -0.5 + X1[, 1] * 0.5 + X1[, 2] * 1 + rnorm(100)
X2 <- matrix(rnorm(90 * 5), nrow = 90, ncol = 5)
y2 <- -0.4 + X2[, 1] * 0.48 + X2[, 2] * 1.1 + rnorm(90)
G <- c(1, 2)
A <- matrix(c(1.5, 0.8, 0.8, 1.5), nrow = 2, ncol = 2)
Est <- Dist(X1, y1, X2, y2, G, A, model = "linear")
## compute confidence intervals
ci(Est, alpha = 0.05, alternative = "two.sided")
#> tau lower upper
#> 1 0.25 0 0.5668541
#> 2 0.50 0 0.6398976
#> 3 1.00 0 0.7859847
## summary statistics
summary(Est)
#> Call:
#> Inference for Distance
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 0.131 0 0.2892 0 1
#> 0.50 0.131 0 0.3265 0 1
#> 1.00 0.131 0 0.4010 0 1