R/LF.R
LF.Rd
Inference for linear combination of the regression vector in high dimensional generalized linear regression
LF(
X,
y,
loading.mat,
model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE,
intercept.loading = FALSE,
beta.init = NULL,
lambda = NULL,
mu = NULL,
prob.filter = 0.05,
rescale = 1.1,
verbose = FALSE
)
Design matrix, of dimension \(n\) x \(p\)
Outcome vector, of length \(n\)
Loading matrix, nrow=\(p\), each column corresponds to a loading of interest
The high dimensional regression model, either "linear"
or
"logistic"
or "logistic_alter"
Should intercept be fitted for the initial estimator
(default = TRUE
)
Should intercept term be included for the loading
(default = FALSE
)
The initial estimator of the regression vector (default =
NULL
)
The tuning parameter in fitting initial model. If NULL
,
it will be picked by cross-validation. (default = NULL
)
The dual tuning parameter used in the construction of the
projection direction. If NULL
it will be searched automatically.
(default = NULL
)
The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
The factor to enlarge the standard error to account for the finite sample bias. (default = 1.1)
Should intermediate message(s) be printed. (default =
FALSE
)
The vector of plugin(biased) estimators for the
linear combination of regression coefficients, length of
ncol(loading.mat)
; each corresponding to a loading of interest
The vector of bias-corrected estimators for the linear
combination of regression coefficients, length of ncol(loading.mat)
;
each corresponding to a loading of interest
The vector of standard errors of the bias-corrected estimators,
length of ncol(loading.mat)
; each corresponding to a loading of interest
The matrix of projection directions; each column corresponding to a loading of interest.
X <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- -0.5 + X[, 1] * 0.5 + X[, 2] * 1 + rnorm(100)
loading1 <- c(1, 1, rep(0, 3))
loading2 <- c(-0.5, -1, rep(0, 3))
loading.mat <- cbind(loading1, loading2)
Est <- LF(X, y, loading.mat, model = "linear")
## compute confidence intervals
ci(Est, alpha = 0.05, alternative = "two.sided")
#> loading lower upper
#> 1 1 1.199535 1.6507740
#> 2 2 -1.383149 -0.9938177
## summary statistics
summary(Est)
#> Call:
#> Inference for Linear Functional
#>
#> Estimators:
#> loading est.plugin est.debias Std. Error z value Pr(>|z|)
#> 1 1.322 1.425 0.11511 12.38 0.000e+00 ***
#> 2 -1.105 -1.188 0.09932 -11.97 5.349e-33 ***