R/QF.R
QF.Rd
Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions
Design matrix, of dimension \(n\) x \(p\)
Outcome vector, of length \(n\)
The set of indices, G
in the quadratic form
The matrix A in the quadratic form, of dimension
\(|G|\times\)\(|G|\). If NULL
A would be set as the
\(|G|\times\)\(|G|\) submatrix of the population covariance matrix
corresponding to the index set G
(default = NULL
)
The high dimensional regression model, either "linear"
or
"logistic"
or "logistic_alter"
Should intercept be fitted for the initial estimator
(default = TRUE
)
The initial estimator of the regression vector (default =
NULL
)
Sampling splitting or not for computing the initial estimator.
It take effects only when beta.init = NULL
. (default = TRUE
)
The tuning parameter in fitting initial model. If NULL
,
it will be picked by cross-validation. (default = NULL
)
The dual tuning parameter used in the construction of the
projection direction. If NULL
it will be searched automatically.
(default = NULL
)
The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
The factor to enlarge the standard error to account for the finite sample bias. (default = 1.1)
The enlargement factor for asymptotic variance of the
bias-corrected estimator to handle super-efficiency. It allows for a scalar
or vector. (default = c(0.25,0.5,1)
)
Should intermediate message(s) be printed. (default =
FALSE
)
The plugin(biased) estimator for the quadratic form of the
regression vector restricted to G
The bias-corrected estimator of the quadratic form of the regression vector
Standard errors of the bias-corrected estimator,
length of tau
; corrsponding to different values of tau
X <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- X[, 1] * 0.5 + X[, 2] * 1 + rnorm(100)
G <- c(1, 2)
A <- matrix(c(1.5, 0.8, 0.8, 1.5), nrow = 2, ncol = 2)
Est <- QF(X, y, G, A, model = "linear")
## compute confidence intervals
ci(Est, alpha = 0.05, alternative = "two.sided")
#> tau lower upper
#> 1 0.25 1.132801 3.627147
#> 2 0.50 1.125124 3.634824
#> 3 1.00 1.109910 3.650038
## summary statistics
summary(Est)
#> Call:
#> Inference for Quadratic Functional
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 1.842 2.38 0.6363 3.740 0.0001839 ***
#> 0.50 1.842 2.38 0.6402 3.717 0.0002014 ***
#> 1.00 1.842 2.38 0.6480 3.673 0.0002399 ***